

JCAA/JG-PP No-Lead Solder Testing

Tom Woodrow
Boeing Phantom Works
Seattle, WA

International Pollution Prevention Workshop

September 22, 2004

Status

- Boeing Irving completed assembly of 205 test vehicles
- Vehicles distributed to testing sites on 7/19/04
- Testing
 - ✓ Boeing Seattle (thermal cycle*, thermal shock, vibration)
 - √ Boeing Anaheim (SIR*, electromigration*)
 - √ Rockwell-Collins (thermal cycle)
 - √ ACI (mechanical shock, salt fog)
 - √ Raytheon (combined vibration/thermal cycle)
 - √ Sandia (microsections*)

^{*}Donated as work-in-kind

Boeing Testing (Seattle)

- Thermal Cycle (15 test vehicles)
 - √5 SnPb; 5 SnAgCu; 5 SnAgCuBi
- Thermal Shock (30 test vehicles)
 - √5 SnPb; 5 SnAgCu; 5 SnAgCuBi
 - ✓ (Reworked) 5 SnPb; 5 SnAgCu; 5 SnAgCuBi
- Vibration (30 test vehicles)
 - √5 SnPb; 5 SnAgCu; 5 SnAgCuBi
 - ✓ (Reworked) 5 SnPb; 5 SnAgCu; 5 SnAgCuBi

Thermal Cycling - Boeing (-20°C to 80°C)

Thermal Cycle Chamber

Thermal Cycle (-20°C to +80°C; Actual Board Temperature) 30 min. dwell (hot); 10 min. dwell (cold)

Anatech Event Detectors

Up to 4 can be controlled by one computer for a total of 1024 channels

Labview-based Data Collection Software

Thermal Shock - Boeing (-55°C to 125°C)

Thermal Shock Chamber Capable of -70° to 200°C Wired for 512 Channels

Thermal Shock Cycle (-55°C to 125°C,15 min. dwells)

Test Vehicles Ready for Thermal Shock Test

 $[\]beta$ 1=5.4468, η 1=692.9868, ρ =0.9882 β 2=7.8529, η 2=899.1317, ρ =0.9721

 $\beta 3=6.8595$, $\eta 3=963.3632$, $\rho=0.9571$

Vibration - Boeing

Pathfinder Board

- A "pathfinder" board was used:
 - ✓ To verify that there were no problems with electronic noise, the fixture, or the wires
 - ✓ A modal analysis was done using a laser vibrometer (maps mode shapes and identifies resonances)
 - ✓ A strain gauge was mounted on the "pathfinder" board so that CALCE would have strain data for validation of their models

Test Vehicle

Strain data was taken for CALCE

Laser Vibrometer System for Modal Analysis of Test Vehicle

Laser Vibrometer Measures Velocities, Accelerations, Displacements

Laser Vibrometer (Don Powers)

Pathfinder Test Vehicle in Z-Axis (16.0 Grms)

Operating Deflection Shape at 72 Hz

Operating Deflection Shape at 101.5 Hz

Operating Deflection Shape at 411.5 Hz

Strain Acquisition using Prism (Tom Kowalski)

Strain vs. Frequency (the most strain is at 72 Hz)

Test Vehicles in Fixture

Vibration Table (Y-axis)

Vibration Table (Z-axis)

Anatech Event Detectors

Test Vehicles in Z-Axis (20.0 Grms)

Vibration Status

- All "manufactured" and "rework" test vehicles have been tested
- Data needs to be reduced and put into a useable format

U43 BGA (Manufactured Boards)

Test Vehicle ID	Solder/Finish	Time at Each Level (minutes)								
		Y-axis	X-axis	Z-axis	Z-axis	Z-axis	Z-axis	Z-axis	Z-axis	Z-axis
		9.9 Grms	9.9 Grms	9.9 Grms	12.0 Grms	14.0 Grms	16.0 Grms	18.0 Grms	20.0 Grms	28.0 Grms
79	SAC/SAC	60	60	5						
77	SAC/SAC	60	60	6						
75	SAC/SAC	60	60	10						
76	SAC/SAC	60	60	23						
78	SAC/SAC	60	60	60	10					
116	SACB/SAC	60	60	7						
114	SACB/SAC	60	60	16						
117	SACB/SAC	60	60	20						
115	SACB/SAC	60	60	32						
118	SACB/SAC	60	60	51						
6	SnPb/SnPb	60	60	54						
5	SnPb/SnPb	60	60	60	3					
8	SnPb/SnPb	60	60	60	16					
9	SnPb/SnPb	60	60	60	16					
7	SnPb/SnPb	60	60	60	20					

Data Sharing

- Vibration test data will be shared with the U of Maryland (CALCE)
- CALCE will use the test data to help validate their vibration fatigue computer models